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Abstract

Herpes simplex virus (HSV) is responsible for one of the most common infections 

within the population. The primary antiviral used against HSV infections are nucleoside 

analog drugs such as acyclovir and its deviates. However, in recent years the number of 

cases of drug resistant HSV has increased, resulting in interest for new novel treatments. 

Promising antiviral agents are theaflavins found within black tea derived from Camellia 

sinensis. These theaflavins include theaflavin (TF1), theaflavin-3-monogallate (TF2A), 

theaflavin-3’-monogallate (TF2B), and theaflavin-3-3’-digallate (TF3). Previous studies 

have supported that theaflavins from black tea, specifically TF3, inhibit the process of 

viral absorption. Due to this mode of action, black tea theaflavins show potential for 

synergistic antiviral activity when combined with drugs such as acyclovir, which inhibit 

viral replication. This study examined the antiviral activity of black tea extract and TF3 

with acyclovir on HSV-1 and HSV-2 infections in A549 cells. Cytotoxic analysis was 

performed with a trypan blue, WST-1 cell proliferation, and ToxGlo assay. Data for each 

assay supported that concentration of 100 pM of TF3 or 100 pM BTE in combination 

with 50 pM of acyclovir produce no cytotoxicity in A549 cells. Antiviral activity was 

measured using a WST-1 based antiviral assay along with a viral ToxGlo assay. In each 

case theaflavins showed higher antiviral activity when combined with acyclovir, with up 

to 21.8% increase in viral inhibition. Moreover, the mixture showed higher antiviral 

activity than acyclovir alone at concentrations of 5 pM. Furthermore, isolated TF3 with 

acyclovir showed higher levels of viral inhibition than the combination of theaflavins 

with acyclovir. In conclusion, acyclovir and black tea theaflavins, TF3 in particular, have
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shown synergistic activity and may provide an alternative regimen, to decrease

emergence of resistant strains of HSV types 1 and 2.
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Introduction

Herpes simplex vims (HSV) is responsible for one of the most common infections 

within the human population. Despite its prevalence no cure is available due to HSV’s 

ability to remain in a latent state within the host’s neurons, causing sequential outbreaks 

during reactivation for life. The primary antivirals used to treat outbreaks are nucleoside 

analog dmgs such as acyclovir. However, in recent years the number of cases of drug 

resistant HSV has increased, resulting in interest for novel treatments. Promising antiviral 

agents are theaflavins found within black tea derived from Camellia sinensis. These 

theaflavins include theaflavin (TF1), theaflavin-3-monogallate (TF2A), theaflavin-3’- 

monogallate (TF2B), and theaflavin-3-3’-digallate (TF3). Previous studies have 

supported that theaflavins from black tea, specifically TF3, interact with viral surface 

proteins thus interfering with the process of absorption (Leung et al., 2001; Cantatore et 

al., 2013). Due to this mode of action, black tea theaflavins show potential for synergistic 

antiviral activity when combined with dmgs such as acyclovir, which inhibit DNA 

replication. The purpose of this study is to examine the antiviral activity of black tea 

extract and TF3 with acyclovir on HSV-1 and HSV-2 infections in A549 cells. Synergy 

between the theaflavins and acyclovir could provide new potential regimens for HSV 

infections, which would decrease the prevalence of resistant strains. Furthermore, a 

regimen with strong synergy will allow for shorter outbreak times and quicker healing.

1
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Review of Literature

Herpes simplex virus types 1 and 2 are two human pathogens that cause infection 

in human epithelial cells. Herpes simplex virus type 1 (HSV-1) is known by most as the 

cause of lesions on the lips, commonly referred to as cold sores. On the other hand, 

Herpes simplex virus type 2 (HSV-2) is the typical cause of genital warts and is classified 

as a sexually transmitted infection. While each virus has a preferred point of infection, 

both viruses can be found at either location and in fact can cause active outbreaks in any 

type of epithelial cells of the body (Connell, Cerruti, and Trown, 1985). Once infected, 

individuals will experience occasional outbreaks for life, leading to psychological and 

socioeconomic stress. Majority of infections are not life threatening. However, both 

viruses can cause ocular manifestations, which are known as HSV keratitis and are 

estimated to infect 500,000 in the United States (Farooq and Shukla, 2012). Disease 

progression can lead to blindness, causing the disease to be cited as the leading cause of 

infectious blindness in the developed countries (Liesegang, 2001). Herpes infections can 

also become life threatening when the virus begins to replicate in the brain, known as 

herpes encephalitis, causing inflammation (Whitley, 2006). As such, HSV has become a 

significant public health concern.

The actual cause of genital warts and cold sores are HSV-1 and HSV-2 

respectively. Both viruses are members of the Herpesviridae family of viruses, 

specifically within the Alphaherpesvirinae subfamily (Roizman and Baines, 1991). Like 

all members of the family, HSV-1 contains a double stranded DNA genome encased 

within a complex capsid. The genome consists of 75 protein-coding genes with the highly 

conserved genes located within the UL sequence and the variable sequences for the strain

2
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located in the US regions (Mcgeoch et al., 1987; Macdonald et al., 2012). Once the virus 

enters the body orally through direct contact, the virions migrate to the epithelial cells of 

the lips and produce lesions through an active lytic infection. However, after the primary 

infection has run its course the virus migrates to the neurons where it enters a dormant 

state until the virus receives an activation signal. Once the virus has been reactivated the 

virus enters the lytic pathway once more and virions migrate down the axon through 

retrograde axon transport to the epithelial cells causing the lesions to appear once more 

(Webre et al., 2012). The virus is able to switch between active and dormant states 

through this process of reactivation, while in the latent state the virus is hidden within the 

host cell’s DNA, and therefore becomes impervious to current treatment options. This 

causes herpes infections to become lifelong with no currently available cure. Current 

treatments reduce virus titers during outbreaks to shorten periods of infection.

Estimates show that 45% to 98% of individuals within the human population are 

seropositive for HSV-1. Of the United States population 40% to 63% are seropositive 

with higher percentages found within adults over 60 years old (Spruance, 1992; 

Fatahzadeh and Schwartz, 2007). On the other hand, HSV-2 shows 16% to 21.8% 

seropositive adults in the United States (Malkin, 2004). In both cases the viruses are seen 

more commonly in women and non-Hispanic blacks who showed 20.9% and 39.2% 

seropositive, respectively, for HSV-2. Although, studies have indicated that prevalence of 

HSV-2 is almost negligible in individuals that are not sexually active, mainly due to the 

viruses preferred area of expression and mode of transmission. Rates of HSV-2 infection 

are also highly age dependent. Children under 15 have been shown to have the lowest 

reported cases of seropositive, with the number of cases increasing around puberty,

3
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plateauing at around 40 years old. On the other hand, the prevalence of HSV-1 is found 

equally in the population and increases with age, with less than 40% of the population 

seropositive at 15 years and increasing linear fashion, leading to 60-90% seropositive 

positive in older adults. It is estimated with increased availability of type specific HSV 

ELISA’s in recent years that the number of seropositive cases may be higher than 

previously anticipated (Smith and Robinson, 2002).

The high prevalence seen in HSV is due to the lack of a cure and to the virus’s 

ability to remain dormant in the neurons, known as latency. The latent stage of HSV-1 is 

the result of an alteration in the genetic expression pathway of the virus. During lytic 

infections, VP 16 activates the expression of the immediate early genes ICP0 and ICP4, 

which then cause the production of early genes, DNA replication, and structural genes in 

a transcriptional cascade (Wildy, Field and Nash, 1982). On the other hand, during 

latency HSV-1 expresses only a limited number of gene products, which are collectively 

known as LATs (Allen et al., 2011). These LATs interact with the genome and ensure the 

expression of the immediate early genes ICP0 and ICP4 does not occur. Thus the virus 

remains in a latent state where no new virions are produced. Other functions of the LATs 

have been proposed, such as an ability to promote neuronal survival in latently infected 

cells (Webre et al., 2012). Unfortunately, the virus does not remain in the latent state 

indefinitely. Several appropriate stimuli, such as stressor, weakening of the immune 

system, or heat can cause the virus to exit the latent stage and begin to replicate. During 

this process, the newly established virions utilize anterograde transport to travel down the 

axon and re-infect the local epithelial cells (Hafezi et al., 2012). For the patient, this 

results in the reappearance of a cold sore lesion.

4
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The frequency of reactivation has been found to depend on several factors, all of 

which have a direct correlation with the immune system. One such factor is the age and 

health of the host. As a person ages the immune system tends to weaken in a process 

known as immunosenescence (Bennett et al., 2012). As the natural process of 

immunosenescence occurs, the body is unable to properly fight off infections, leading to 

increased illness. While in the latent state the HSV-1 will not reactivate as long as the 

immune system is healthy and active (Bennett et al., 2012). Instead, when the immune 

system is weakened by another infection HSV-1 tends to reestablish a lytic infection 

within the host through some unknown mechanism. However, it has been shown that 

HSV-1 can be reactivated through heat, thus it has been theorized that the increased body 

temperature acts as a signal to the latent HSV-1 and causes it to reactivate (Stowe, Peek, 

Cutchin, and Goodwin, 2012). Thus, the body temperature acts as a signal, telling the 

virus that the host immune system is compromised and it is a prime time to establish an 

active infection. As the person increases in age, the immune system declines, leading to 

more infections, and thus more signals for the HSV-1 to enter the lytic pathway through 

reactivation. Any potential cure of HSV infections would be required to not only 

eliminate existing viral titers but aid in the removal of latent virus as well.

Despite both viruses causing similar symptoms, HSV-1 and HVS-2 have several 

key differences stemming for the evolutionary divergence of the viruses roughly 8 

million years ago. The most notable differences between the two viruses are the cell 

tropism. HSV-1 tends to produce outbreaks on the lips, while HSV-2 is usually seen in 

the pubic region, which is primarily due to virus producing virions more efficiently from 

specific ganglia. HSV-1 tends to enter latency within the trigeminal ganglia, while HSV-

5
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2 tends to enter latency in the lumbar-sacral ganglia. The gene product found in latency, 

LATs, have been shown to effect the location of the efficiency of the site-specific 

reactivation. The region coding LATs in HSV-1 and HSV-2 are significantly different, 

which contributes to this difference in reactivation location (Yoshikawa et al., 1996). 

Alignment of the DNA sequences shows an 83% identical nucleotide alignment. Most of 

this alignment occurs within the coding regions, and as a result the two viruses contain 

nearly all of the same protein products. However, one gene in particular is heavily altered 

between the two viruses. The US4 gene, which is responsible for encoding glycoprotein 

G, contains large deletions in HSV-1, as compared to HSV-2. It has been proposed that 

this difference in glycoprotein is responsible for the difference in cell tropism observed 

with these viruses (Dolan et al., 1997). Differences in protein products, even minor, can 

lead to altered response to treatments and requires individual testing of antivirals for both 

HSV-1 and HSV-2 for effective treatments.

Currently, the frontline drug for herpes simplex infections is acyclovir [9-(2- 

hydroxyethoxymethyl) guanine] and its derivatives. Acyclovir is stable for oral and 

topical application with 15-30% bioavailability and is also administered intravenously for 

severe infections. Since its development in 1981 derivatives of the drug have been 

developed with increased bioavailability, specifically valacyclovir with 54% 

bioavailability (Frobert et al., 2014). In its native state acyclovir is inactive, however 

when exposed to viral thymidine kinase acyclovir is converted into acyclovir 

monophosphate, which is phosphorylated twice by host kinase and nucleoside 

diphosphate kinase to produce acyclovir triphosphate. Acyclovir triphosphate competes 

with 2-deoxyguanosine triphosphate (dGTP) for incorporation by viral DNA polymerase

6
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as a nucleoside on the free 3’ hydroxyl of the growing viral DNA chain. However, 

binding of the next deoxynucleoside 5’-triphoaste to the primer template produces a dead 

end complex, preventing further nucleotide addition. Furthermore, the 3’, 5’-exonuclease 

activity of HSV DNA polymerase I cannot remove acyclovir triphosphate leading to 

incomplete viral replication (Frobert et al., 2014, Reardon and Spector, 1989). Since 

Herpes DNA polymerase is 100 times more likely to incorporate an acyclovir 

triphosphate than cellular DNA polymerase it is considered highly selective. This 

selectivity is further heightened due to the inability of acyclovir to become active without 

the presence of viral kinases thus acyclovir shows minimal cytotoxicity to uninfected 

cells.

Despite the success of acyclovir, in recent years there have been increasing 

reports of acyclovir resistant strains of HSV, specifically in immunosuppressed patients. 

These include patients with HIV infections, post-transplant surgery, and congenital 

immunodeficiency. A study conducted in France has shown that over the past 10 years 

the number of cases of resistance as increased from 3.8% in 2002-2006 to 15.7% in 2007- 

2010 in immunocompromised patients. Prevalence in other regions of the world can 

range from 2.5-10% in immunocompromised patients. For immunocompetent patients the 

rates of resistance are significantly lower, with only .3% reported in the United States. In 

immunocompetent patients the occurrence of resistance has not been shown to alter the 

clinical outcome. Rates of resistance in immunocompetent patients are usually associated 

in patient with genital herpes, herpes keratitis, or herpes encephalitis with fewer reported 

cases of facial herpes (Piret and Boivin, 2011). Therefore, the number of incidence of 

resistance may be higher in the immunocompetent population than previously recorded.

7
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Under typical conditions acyclovir prevents replication of HSV and any survivors are 

eliminated by the immune system. In immunosuppressed patients the immune system 

cannot aid acyclovir, leading to increased prevalence of resistant strains (Piret and 

Boivin, 2011, Frobert et al., 2014). While resistance primarily develops in 

immunosuppressed individuals, it can easily spread into new hosts, leading to prevalence 

of resistant strains in the general population.

Resistance to acyclovir is the result of mutations in viral thymidine kinase or viral 

DNA polymerase I. Alterations in either gene would result in inadequate conversion of 

acyclovir to its active form or incorporation of acyclovir triphosphate. Mutations to 

thymidine kinase arise in the UL23 gene for both HSV-1 and HSV-2. Majority of the 

cases of thymidine kinase resistance show a deletion or addition within homopolymer 

repeats of guanines or cytosines. These alterations cause frameshifts of the entire gene 

sequence and therefore produce a nonfunctional truncated enzyme. DNA polymeraze I 

mutations, while les common, are the results of alterations to the UL30 and UL42 genes. 

Mutations are typically single amino acid substitutions located within regions II and III of 

the polymerase. These areas are associated with recognition and binding of nucleotides. 

Regardless, either mutation would lead to decreased effectiveness of acyclovir on HSV 

infections. Ninety-five percent of clinical resistant stains are the result of thymidine 

kinase mutations rather than DNA polymerase I (Piret and Boivin, 2011, Pottage and 

Kessler, 1995; Larder and Darby, 1982). As such, derivatives of acyclovir become 

ineffective for treatment and different treatment options must be explored. Novel drug 

therapies are being researched to use alongside acyclovir to decrease the prevalence of 

such resistant strains.

8
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Throughout the world natural product remedies have been historically used to 

treat a wide variety of illnesses. One such example is tea, which has been shown to be a 

powerful antioxidant, to reduce hydrogen peroxide induced oxidative damage, and inhibit 

growth of bacteria and viruses among other benefits (Yang et al., 2012; Tanaka et al., 

2014; Jeon et al., 2014; Cantatore et al., 2013). Commercially consumed tea is typically 

derived from the plant Camellia sinensis, which is the second most consumed beverage in 

the world, with a per capita worldwide consumption of .12 liters per day (Graham, 1992). 

Traditionally preparation involves complete, incomplete, or no fermentation of a leaf 

resulting in green, oolong, and black tea respectively. This process involves letting the 

leaves air dry, which leads to oxidation. While the fermentation process does lead to 

differences in taste and aroma, it also leads to different polyphenol composition (Graham, 

2001). In green tea catechins predominate while in black tea theaflavins are more 

common. The theaflavins found within black tea can further be identified as theaflavin 

(TF1), theaflavin-3-monogallate (TF2A), theaflavin-3’-monogallate (TF2B), and 

theaflavin-3-3,-digallate (TF3) (Leung et al., 2001). While the chemical structure is 

slightly varied, each of the theaflavins are stable at neutral pH and highly reactive (Issacs 

and Xu, 2013). TF3, unlike the other theaflavins, contains two gallate rings, which 

provide several additional hydroxyl groups. These additional hydroxyl groups allow TF3 

to be a more power antioxidant than the other theaflavins. Furthermore, this additional 

reactivity may support that theaflavins derived from black tea are more potent at viral 

inhibition than catechols of green tea.

The antiviral activity of theaflavins and catechols has been examined in recent 

studies, showing inhibition in viruses such as herpes, human immunodeficiency virus

9
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(HIV), influenza, and hepatitis C (Yang et al., 2014; Yang et al., 2012; Issac et al., 2011; 

Cantatore et al., 2013). Specifically the mode of action of these tea phenols is via 

interaction with essential viral proteins. For HSV-1 and HSV-2 glycoprotein B, a 

necessary protein for vial attachment and entry, appears to be the target. Upon interaction 

glycoprotein mediated membrane fusion is disrupted and viral titers decrease 

substantially (Elion, 2011). Furthermore, this mechanism of inhibition is not only seen in 

members of the herpes simplex family. Similar inhibition of enveloped proteins required 

for fusion has been observed in HIV and enteroviruses, thus supporting that tea phenols 

are a potential general antiviral agent (Elion, 2011).

Ideally a drug regimen to maximize herpes inhibition would require increased 

efficiency, bioavailability, and reduced potential for resistance. Such potential exists in 

using a regimen of drugs that work in synergy rather than a single inhibitor. By applying 

two drugs that utilize different mechanisms, viral inhibition can increase to levels not 

seen with either alone. Furthermore, the prevalence of resistance decreases due to the 

requirement for multiple mutations in the viral genome to decrease effectiveness in two 

different pathways. Based on this definition the phenols from tea leaves could provide 

such synergy when combined with existing drugs such as acyclovir. The mode of 

inhibition of acyclovir is dependent on the viral DNA synthesis, while tea phenols are 

shown to act on viral absorption. Theoretically, by acting on different modes of action the 

two should show a degree of synergy. The proposed study will examine such synergy 

between theaflavins of black tea and acyclovir. By evaluating the antiviral activity of 

theaflavins and acyclovir alone it will be possible to evaluate if a combination of the two 

reagents can lead to higher antiviral activity than either alone. If synergy is observed then

10
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a new drug regimen can be utilized for HSV infections and decrease the prevalence of 

resistance and offer a more effective treatment for current patients.

11
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Materials and Methods

Cells

Viruses were harvested and propagated in A549 cells [American Type Culture 

Collection (ATCC) CCL-185, Manassas, VA], a human lung epithelial line. Cells were 

maintained in a T25 flask at 5% C 0 2 at 37°C in Ham’s F12-K (Kaighn’s) media (Life 

Technologies, Grand Island, NY), supplemented with 10% Fetal Bovine Serum (FBS) as 

well as 10 pg/ml gentamicin.

Virus maintenance

Virus stocks of HSV-1 UL-46 that contains a green fluorescent protein (GFP) 

insert fused to the tegument protein (Willard, 2002)(ATCC, Manassas, VA) and HSV-2 

(VR-1779) (ATCC, Manassas, VA) were maintained for the experiment. Passage of virus 

was performed in a T25 flask of A549 cells. A monolayer of cells were infected and 

checked daily for complete cytopathic effect. Media was then collected and centrifuged 

briefly to remove cellular debris. Resulting supernatant was transferred to 

microcentrifuge tubes and stored at -80°C for the course of the experiment.

Black tea extract preparation

BTE > 80% theaflavin (10 mg) (Sigma-Aldrich, Saint Louis, MO, USA) was 

dissolved in 1 ml of dimethyl sulfoxide (DMSO), giving a final concentration of 14 mM 

BTE stock solution. Solution was maintained in microcentrifuge tubes stored at 4°C. 

Concentrations of 25,50,75, and 100 pM were prepared through dilution with Ham’s 

F12-K media as needed.

TF3 preparation

12
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TF3 >98% (1 mg) (Nacalai USA Inc, San Diego, CA, USA) was dissolved in 1 

mL of DMSO giving a concentration of 1.1511 mM stock solution. TF3 solution was 

maintained in microcentrifuge tubes at -20°C. Concentrations of 25,50,75, and 100 pM 

were prepared through dilution with Ham’s F12K media as needed.

Acyclovir preparation

Acyclovir (.22521 mg) (Spectrum Chemicals, Gardena, CA, USA) was dissolved 

in 1 mL DMSO giving a concentration of 1M. Acyclovir stock solution was maintained 

in microcentrifuge tubes at 4°C. Concentrations of 0.1 to 50 pM were prepared through 

dilution with Ham’s F12K media as needed.

Assays

Cytotoxicity

A549 cells were seeded into 6 well plates and allowed to incubate over 24 hours 

to reach 80% confluence. Once at the desired confluence 100 pL of varying 

concentrations of BTE (25 pM to 100 pM), TF3 (25 pM to 100 pM), or acyclovir (1 pM 

to 50 pM) were added to each well. Reagents were allowed to absorb over one hour, 

aspirated, and replaced with 100 pL Hams F12-K media. Cells were incubated at 37°C 

and 5% C 0 2 for 24 hours, at which point they were observed at 400x magnification 

through a phase contrast microscope. Morphological differences were assessed through 

comparison between a negative control of cells grown in media only. The same protocol 

was applied for combinations of BTE or TF3, at concentrations of 25 to 100 pM, with 5 

pM of acyclovir.

Trypan Blue

13
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A549 cells were seeded into 6 well plates and allowed to propagate over 24 hours 

to reach 80% confluence. At this time 100 pL of various concentrations of BTE (25 pM 

to 100 pM), TF3 (25 pM to 100 pM), or acyclovir (.1 pM to 50 pM) were added to each 

well. Furthermore, combination of TF3 (25 pM to 100 pM) or BTE (25 pM to 100 pM) 

with 5 pM acyclovir was tested. After one hour, wells were aspirated and replaced with 

100 pL Ham’s F12-K media. Cells were allowed to propagate over 24 hours at 37°C and 

5% C 0 2. Cells were then exposed to 250 pL trypsin for five minutes to facilitate cell 

detachment. Trypsin was inactivated with 1 mL of media and cell solution placed into 

centrifuge tubes. Cells were then centrifuged for 5 minutes and 2 ml of the supernatant 

was removed. Remaining solution was briefly vortex and .5 ml of trypan blue was added. 

Ten pL of cell suspension was added to a hemocytometer and ratio of dead cells to live 

cells was recorded.

WST-1 Cell Proliferation

Ten pL of A549 cell suspension were seeded into wells of a 96 well plate along 

with 90 pL of Ham’s F12-K media and allowed to propagate to 80% confluence over 24 

hours. At this time BTE (25 pM to 100 pM), TF3 (25 pM to 100 pM), or acyclovir (1 

pM to 50 pM) was added to respective wells. Also, combination of TF3 (25 pM to 100 

pM) or BTE (25 pM to 100 pM) with 5 pM acyclovir were tested. After one hour 

unabsorbed reagents were aspirated and 100 pL of media was added to each well. 

Seventy-two hours later, 10 pL of WST-1 reagent (Roche Diagnostics, Indianapolis, IN, 

USA) was added to each well and allowed to sit for one hour, with intermediate rocking 

every 15 minutes, in an incubator set to 37°C and 5% COz. The plate was then read

14



www.manaraa.com

through a 96 well plate reader set at 450 nm and absorbance was recorded. Assay was 

performed in triplicate.

ToxGIo Cytotoxicity

A 96 well plate was seeded with lOpL of A549 cell solution and allowed to 

propagate for 24 hours. Media was removed and 100 pL of various concentrations of 

TF3, ranging from 25 pM to 100 pM, were added to the respective well. Combination of 

TF3 ranging from 25 pM to 100 pM with 5 pM acyclovir were also tested. After one- 

hour absorbance the compounds were removed and 100 pL of Ham’s F12-K media was 

added to each well. After 72 hours, 100 pL of ToxGIo reagent (Promega Corp., Madison, 

WI) was added to each well and the plate was read by a luminometer. ATP to relative 

light unit (RLU) conversion was obtained through plating ATP at concentrations of 1 

mM to .14 nM on a 96 well plate. ToxGIo reagent (100 pL) was added to each well and 

RLU was recorded. The assay was performed in triplicate.

WST-1 Antiviral Assay

A549 cells were seeded into a 96 well plate and allowed to propagate to 80% 

confluence over 24 hours. At this point 100 pL of virus stock, either HSV-1 or HSV-2, 

was combined with 100 pL of various concentrations of BTE (25 pM to 100 pM), TF3 

(25 pM to 100 pM), or acyclovir (5 pM). For synergy, virus was mixed with TF3 or 

BTE, ranging from 25 pM to 100 pM, combined with concentrations of acyclovir 

maintained at 5 pM. After one hour of treatment with the reagents, 100 pL of the virus 

solution was added to respective wells on the 96 well plate for one hour. Unabsorbed 

virus was then aspirated and replaced with 100 pL of Ham’s F12K media. After 72 hours 

of infection, 10 pL of WST-1 reagent was added to each well with rocking every 15
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minutes. After one hour the plate was read through a 96 well plate reader set at 450 nm. 

Antiviral activity was determined through comparison of a negative control (media 

treated cells) and a positive control (untreated virus and cells). The assay was performed 

in triplicate.

Viral ToxGIo

Cells were seeded into a 96 well plate and allowed to reach 80% confluence over 

24 hours. One hundred pL of virus, either HSV-1 or HSV-2, was then treated with 100 

pL of TF3 with concentrations ranging from 100 pM to 6.25 pM or BTE, 100 pM to 6.25 

pM, combined with 5 pM acyclovir. After one hour of treatment with the compounds,

100 pL of the viral solution was added to the 96 well plate. After one hour absorption the 

solution was aspirated and 100 pL of Ham’s F12-K media was added with intermittent 

rocking every 15 minutes. After 72 hours, 100 pL of ToxGIo reagent was added to each 

well and allowed to sit for one hour. The plate was then read through a luminometer and 

RLU values of each well were recorded. The assay was performed in triplicate
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Results

BTE and TF3 concentrations up to 100 pM and acyclovir concentrations up to 50 

pM do not alter cell morphology

A549 cells were treated with a range of BTE or TF3 at concentrations from 25 

pM to 100 pM. Cells were observed for morphological changes over the course of 48 

hours. For each concentration of BTE and TF3, up to the maximum concentration of 100 

pM, no morphological changes were observed. Changes were evaluated by comparison to 

a positive control of cells treated with only Ham’s F12-k media. For acyclovir, no altered 

morphology was observed for concentrations of 0.1 to 50 pM. For the highest 

concentration of the combination of TF3 or BTE (100 pM) with the highest concentration 

of acyclovir (50 pM) there showed no significant change in cell morphology (Figures 

1,2,3).

ACV0.1 pM ACV0.5 pM ACV 1 pM

ACV 5 uM ACV 10 pM ACV 50 uM
Figure 1: Morphological effect of acyclovir on A549 cells

17



www.manaraa.com

m

BTE 25 nM

BTE 100 nM

BTE 25 mM + 5 (iM ACV

BTE 50 nM + 5 mM ACV

f  . . ' ' •'

4»

BTE 75 pM + 5 pM ACV
’■"t* ■

'> * '■ .>

BTE 100 |iM + 5 |j M ACV

Figure 2: Morphological effect of BTE and acyclovir on A549 cells
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TF3 50 mM

TF3 25 nM + 5 nM ACV

TF3 50 (iM + 5 jiM ACV

TF3 100 [iM TF3 100 yiM + 5 ACV

Figure 3: Morphological effects of TF3 and acyclovir on A549 cells 

BTE and TF3 at 100 pM and acyclovir at 50 pM do not alter cell viability

Viability was quantitatively determined with a trypan blue assay. With a 

hemocytometer the number of live and dead cells was evaluated and a ratio was 

determined for the percent of cells that were viable after a 24-hour period of treatment 

with BTE, TF3, or acyclovir. For both TF3 and BTE the percent of viable cells remained 

consistent with the positive control of cells treated with 10% FBS media. Furthermore,
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cells that were treated with a combination of acyclovir and BTE or TF3 showed no 

significant difference in viability as compared to the positive control. For each, as the 

concentration of reagent increased, no difference in cell viability was observed. DMSO 

concentrations used as a solvent, < 0.5%, showed similar viability as compared to the 

positive control (Figure 2). Acyclovir by itself was tested at a range of concentrations 

from 0.1 pM to 50 pM. For each concentration there was similar percent of viable cells as 

compared to the cells treated with media control (figure 4).

Figure 4: Trypan blue assay results for BTE, TF3, and ACV cytotoxicity on A549

cells.
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Figure 5: Trypan blue assay results for ACV cytotoxicity on A549 cells. 

WST-1 proliferation assay supports BTE, TF3, and acyclovir are not toxic to A549 

cells.

To evaluate if cell proliferation was altered by BTE, TF3, or acyclovir a WST-1 

proliferation assay was performed. For each tea reagent a range of concentrations from 

25 pM to 100 pM was used and a percent proliferation was calculated through 

comparison to the negative control of cells treated with 10% FBS media. If the reagents 

are cytotoxic then the concentration of ATP will decrease within a cell, giving lower 

absorbance. Data observed support the findings from the trypan blue assay. TF3 and BTE 

each showed over 85% viability for each concentration, up to 100 pM. For the 

combinations of TF3 and BTE with 5 pM of acyclovir there were similar data observed, 

with no viability below 85%. DMSO at concentrations less than 0.5% showed 93% 

viability when compared to the control (Figure 6). Acyclovir was also tested at 

concentrations from 0.1 pM to 50 pM. All concentrations showed similar percentage of 

viable cells, with none dropping below 90% viability (Figure 7).
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Figure 6: WST-1 assay results for BTE, TF3, and ACV cytotoxicity in A549 cells.

Figure 7: WST-1 assay results for ACV cytotoxicity in A549 cells. 

ToxGlo Proliferation

To confirm the cytotoxicity data, a ToxGlo assay was performed Data collected 

showed similar RLU values between each concentration and the positive control of cells 

with media only. TF3 concentrations from up to 100 pM showed no significant decrease
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in RLU over the negative control, nor did acyclovir at concentrations up to 50 pM. 

Furthermore, DMSO, at concentrations used to dissolve reagents >0.5%, showed no 

difference in RLU in comparison to the positive control (Figure 8). For the combination 

of 5 pM of acyclovir with various concentrations of TF3 ranging from 6.25 pM to 100 

pM, there showed no difference in RLU compared to the control. This data is in parallel

with the data collected from both the viability and proliferation assays.

100000

80000

60000

40000

20000 limili
100 uM 75 nM 50 uM 25 nM 12.5 pM 6.25 Cells and DMSO

Media
Concentration of TF3

Figure 8: ToxGlo assay results for TF3 and Acyclovir cytotoxicity on A549 cells

100000 

80000 

P 60000
m3

*  40000

20000 
0

100 uM 75 nM 50 uM 25 pM 12.5 gM 6.25 pM Cells and DMSO
Media

Concentration of TF3 + 5 pM ACV

Figure 9: ToxGlo assay results for TF3 and Acyclovir combination cytotoxicity

on A549 cells
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TF3 reduces HSV-1 and HSV-2 titers more effectively than 100 pM BTE

Antiviral properties of the tea reagents were quantitatively evaluated with a WST- 

1 assay since infected cells would lead to ATP depletion, thus giving lower absorbance 

readings. The first reagent tested was BTE at concentrations ranging from 25 pM to 100 

pM. At the lowest concentration of BTE, 25 pM, the percent inhibition was only 28.6%. 

However, with increased concentration to the maximum concentration of 100 pM BTE, 

the viral inhibition increased to 65.8% for HSV-1. Viral inhibition was calculated through 

comparison of a negative control (uninfected cells) and a positive control (infected cells 

with no tea reagents), to the absorbance seen in the experimental wells as determined by 

the equations seen below (Figure 10). For HSV-2,25 pM had a viral inhibition of 36.8% 

while 100 pM of BTE showed a 68.7% viral inhibition. On the other hand, the isolated 

TF3 showed viral inhibition of 80.4% at 100 pM for HSV-1 and 78.1% at 100 pM for 

HSV-2. For each concentration there is increased viral inhibition for TF3 over BTE. For 

HSV-1 there was a 22.8% increase in antiviral activity following treatment with TF3 as 

compared to BTE and a 13.74% increase for HSV-2 (Figures 11 and 12).CExperiem ental w ell — positive control)
(N egative control — positive control)

Figure 10: Antiviral equation

Acyclovir has greater synergy with TF3 than BTE against HSV-1 and HSV-2

After determining the baseline of the antiviral activity of the tea reagents and 

acyclovir, the synergy between the tea reagents and acyclovir was evaluated. Due to 

acyclovir being a potent antiviral in its own rights, it was determined that the maximum 

concentration of acyclovir used in the cytotoxicity screening should not be used. At such
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a high concentration the synergy data would be eclipsed by the antiviral activity of 

acyclovir alone and would provide little insight on the synergistic value. Therefore 

screening was performed to find the EC50. Previous studies indicated that 5 pM is the 

EC50 of acyclovir, which was confirmed through a WST-1 assay (Andersen, Jenssen, 

and Gutteberg, 2002). At the EC50 it would be easier to properly evaluate the antiviral 

activity of the combined reagents. Data for HSV-1 and HSV-2 indicated that the viral 

inhibition was 53.8% and 47.8%, respectively. For each synergy evaluation the 

concentration of acyclovir was 5 pM with a varying level of BTE or TF3 ranging from 

concentrations of 25 pM to 100 pM. TF3 showed higher synergy with acyclovir, giving 

higher viral inhibition at each concentration as compared to the BTE. The lowest 

concentration of BTE, 25 pM, showed 46.5% and 51.9% viral inhibition for HSV-1 and 

HSV-2, respectively. While at the highest concentration, 100 pM, the viral inhibition was 

84.6% and 81.1% for HSV-1 and HSV-2, respectively. However, for TF3 at 25 pM viral 

inhibition was 59.6% for HSV-1 and 61.0% for HSV-2. On the other hand, 100 pM of 

TF3 with acyclovir showed 98.4% and 96.4% viral inhibition for HSV-1 and HSV-2, 

respectively (Figure 11 and 12, Tables 1 and 2). At the highest concentration of T F 3 ,100 

pM, there was a 21.8% increase in viral inhibition with the addition of acyclovir for 

HSV-1 and 23.3% increases for HSV-2. For BTE viral inhibition increased by 28.7% for 

HSV-1 and 18% for HSV-2.
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Figure 11: WST-1 antiviral assay results for HSV-1 exposed to BTE, TF3, and

ACV in A549 cells

TF3 TF3 + ACV BTE BTE + ACV
25 pM 35.12±6.1% 59.68±1.85% 28.68±4.14% 46.54±5.26%
50 pM 46.56±2.54% 64.73±3.9% 42.03±4.86% 57.09±6.15%
75 pM 59.37±2.75% 76.73±4.67% 47.09±4.20% 67.86±5.07%

100 pM 80.84±5.25% 98.39±10.72% 65.86±0.98% 84.68±4.64%
Table 1: WST-1 antiviral assay results for HSV-1 exposed to BTE, TF3, and ACV

in A549 cells

Figure 12: WST-1 antiviral assay results for HSV-2 exposed to BTE, TF3, and

ACV in A549 cells
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TF3 TF3 + ACV BTE BTE + ACV
25 pM 40.95±0.68% 61.05±3.80% 36.82±2.94% 51.93±6.54%
50 pM 52.72±5.14% 74.49±0.98% 48.90±2.37% 62.23±3.74%
75 pM 65.53±2.75% 74.14±3.06% 55.88±2.93% 67.91±2.52%

100 pM 78.14±2.14% 96.46±3.96% 68.72±2.14% 81.09±4.36%
Table 2: WST-1 antiviral assay results for HSV-2 exposed to BTE, TF3, and ACV

in A549 cells

Viral ToxGlo assay confirms acyclovir has greater synergy with TF3 than BTE 

against HSV-1 and HSV-2

To confirm these results a viral ToxGlo assay was performed, which provided a 

higher degree of accuracy for viral inhibition measurements. For this assay only TF3 with 

acyclovir was tested. Five pM of acyclovir was combined with various concentrations of 

TF3 ranging from 6.25 to 100 pM. As the concentration of TF3 increased the viral 

inhibition increased. Maximum viral inhibition occurred at 100 pM TF3 with 91.5% 

viral inhibition for HSV-1 (Figure 13, Table 3) and 95.7% viral inhibition for HSV-2 

(Figure 14, Table 3). At concentrations of 12.5 and 6.25 pM the percent inhibition 

plateaued at approximately 50%, similar to the viral inhibition of acyclovir alone as seen 

in the WST-1 antiviral assay.
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ToxGlo HSV-1
100.00%

100 uM 75 uM 50 uM 25 uM 12.5 uM 6.25 uM 
Concentration of TF3 + 5 uM ACV

Figure 13: ToxGlo Assay for TF3 and Acyclovir on HSV-1 infected A549 cells

ToxGlo HSV-2
100.00%

80.00%

3  60.00%

c 40.00%

cu 20.00%

0 .00% I
100 uM 75 uM 50 uM 25 uM 12.5 uM 6.25 uM 

Concentration of TF3 + 5 jiM ACV

Figure 14: ToxGlo Assay for TF3 and Acyclovir on HSV-2 infected A549 cells

HSV-1
100 uM 75 |iM 50 uM 25 uM 12.5 \iM 6.25 \iM
91.56 ±2.79% 77.13±0.65% 72.62±1.19% 56.59±6.00% 44.11 ±4.73% 42.76±5.31%

HSV-2
100 uM 75 uM 50 |iM 25 |iM 12.5 |iM 6.25 \xM
95.59±1.92% 86.99±3.79% 79.75±1.95% 62.00±7.73% 54.82±6.42% 52.25±7.79%

Table 3: ToxGlo Assay for TF3 and Acyclovir on HSV-1 and HSV-2 in A549 cells
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Discussion

HSV-1 and HSV-2 are responsible for one of the most common infections in the 

human population, infecting between 45 to 98% of the population (Xu et al., 2006; 

Spruance, 1992). Infections lead to painful lesions on the lips or genitals, referred to as 

cold sores and genital warts, respectively. While not life threatening, the disease does 

lead to psychological impact on the infected due to recurrent outbreaks throughout the 

individuals life. In some cases, ocular manifestations of the disease, known as herpes 

keratitis can lead to blindness. Due to these symptoms herpes infections are a notable 

health concern in the population and novel treatment options are actively sought.

Tealeaves derived from Camellia sinensis have been well known for their health 

benefits when consumed. Within black tea, theaflavins known collectively as black tea 

extract have shown to be powerful antioxidants (Luczaj and Skrzydlewska, 2007; Yang et 

al., 2007). Furthermore, these tea theaflavins have shown protective properties against 

cardiovascular disease and cancer (Leung et al., 2001). It is through these antioxidant 

properties that theaflavins may be causing viral inhibition. Among the mixture of 

theaflavins, one in particular TF3 is the most powerful antioxidant due to the chemical 

structure. TF3, unlike the other theaflavins, contains two gallate groups, while the others 

simply have one gallate group. Therefore, it is proposed during this study that TF3 may 

have a higher antiviral activity than the mixture of theaflavins found in BTE.

The primary drug used for the treatment of HSV-1 and HSV-2 infections is 

acyclovir and its derivatives. This class of drugs works though converting into an active 

state upon exposure to HSV infected cells. Viral thymidine kinase causes a 

conformational change into acyclovir monophosphate, which is converted by cellular
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kinases into acyclovir triphosphate. Acyclovir triphosphate can then be incorporated into 

the growing viral DNA chain, which due to the lack of a 3’ hydroxyl group, leads to 

stalling of viral replication (Reardon and Spector, 1989). Due to the common mechanism 

of inhibition for acyclovir and its derivate, a mutation in viral thymidine kinase or 

polymerase can lead to resistance. Therefore, novel treatments to aid in the effectiveness 

of acyclovir need to be developed.

The purpose of this study was to assess BTE and TF3 for antiviral properties and 

examine if these theaflavins exhibit synergy when used in combination with acyclovir. 

This hypothesis stems from the findings that theaflavins from Camellia sinensis inhibit 

viral titers through disruption of the absorption process (Cantatore et al., 2013; Lui et al., 

2005). Since acyclovir is known to inhibit HSV during DNA replication, it is reasonable 

to assume that the two reagents would show a degree of synergy since the mode of action 

for inhibition is entirely different.

In order for theaflavins and acyclovir to be an effective treatment option for HSV 

infections it was necessary to assess if the reagents contained cytotoxic properties. Data 

collected during the study indicates that both BTE and TF3 are not cytotoxic to A549 

cells at concentrations up to 100 pM (Figures 4 ,6 , and 8). Furthermore, the lack of 

cytotoxicity is similarly seen in TF3 or BTE combined with up to 50 pM of acyclovir 

(Figures 5 and 7). This suggests that theaflavins and acyclovir do not interact to produce 

a product that would be toxic to human cells. At maximum concentrations ATP 

concentrations remain stable for each reagent tested, indicating proper cell health during 

treatments.
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In addition to the lack of cytotoxicity at 100 pM, the theaflavins found in black 

tea are stable at neutral pH, more so then catechins found in green tea that also have 

antiviral properties (Henning, Choo, and Heber, 2008; Su et al., 2003). As such, 

theaflavins may be a preferred treatment option than other components derived from tea. 

Furthermore, the increased stability would be more suitable for development of a topical 

treatment designed for active lesions during outbreaks.

Inhibition of the virus was measured quantitatively through the use of a WST-1 

proliferation assay. The antiviral assay supported that BTE and TF3 significantly inhibit 

the replication cycle of HSV-1 and HSV-2 at concentrations that are not cytotoxic when 

treated for one hour (Figures 11 and 12). Data also indicate that TF3 is a more potent 

inhibitor of both viruses than the BTE (Figures 11 and 12). This increased antiviral 

activity is most proabably the results of the additional gallate group on TF3, which 

provides additional hydroxyl groups. Additional hydroxyl groups would aide in 

reactiveness of the compound, providing increased antiviral properties not seen in the 

mixture of theaflavins. These findings were confirmed through the use of a viral ToxGlo 

assay, which quantified ATP reduction due to cytopathetic effect (Figures 13 and 14).

When acyclovir was combined with treatments of theaflavins the percent of viral 

inhibition increased in each case, at a maximum of 21.8 and 23.3% increase in antiviral 

activity for TF3 and acyclovir on HSV-1 and HSV-2, respectively (Figures 11 and 12). 

This suggests that a synergistic relationship is present for black tea theaflavins and 

acyclovir. The presence of synergy suggests that acyclovir and theaflavins lack a 

common mechanism. This higher level of viral inhibition may potentially provide the

31



www.manaraa.com

treatment option required to aid in outbreaks and decrease prevalence of resistance strains 

that have been emerging in the population.

While the research presented supports the synergistic antiviral properties of TF3 

and acyclovir, the exact mechanism were not observed. Understanding the mechanisms 

of inhibition by the combination of reagents and TF3 alone could result in a more 

effective treatment and expand on the reasoning for the syngery observed. PCR data for 

treated cells would show the effects of the black tea theaflavins on inhibition of the viral 

replication process. Prior studies have indicated that this inhibition is most likely during 

the process of viral absorption (Cantatore et al., 2013). Application of qPCR on treated 

viral DNA will provide quantitative insight on amplification of viral DNA. By applying 

qPCR over a time course study it will be possible to observe at what timeframes in the 

viral life cycle theaflavins and acyclovir are most effective, Furthermore, qPCR and PCR 

data will support at which stage in the replication cycle the viral inhibition is occurring, 

which will allow for a proper understanding of the mechanisms behind this inhibition. To 

further confirm previous evidence that theaflavins work at the absorption stage of 

replication, an in-depth analysis of treated virus under observation of scanning electron 

microscope (SEM) should be conducted. SEM imaging can show the physical alterations 

to virions during the treatment, such as disrupted envelopes. Observations of such 

alterations would confirm the nature of inhibition seen during theaflavin exposure.

Results shown support that treatment of virus with TF3 and acyclovir show the 

highest inhibition of HSV-1 and HSV-2. The increased stability of TF3 along with the 

higher antiviral properties observed make it an attractive option for a safe topical 

treatment. Along with the synergy observed the mixture of acyclovir and TF3 might

32



www.manaraa.com

become a better treatment option in immunocompromised patients tO decrease the 

emergence of resistant strains.
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Conclusion
Here it has been shown that black tea theaflavins and acyclovir are not cytotoxic 

to human cells through both a cell viability and proliferation assay. In addition, it has 

been show that TF3 and BTE decrease viral replication at concentrations of 25 pM and 

higher for both HSV-1 and HSV-2. Although both are powerful antioxidants, TF3 has 

shown have higher antiviral properties than the combination of theaflavins found within 

BTE. The antiviral properties can further be heightened through the addition of 5 pM 

acyclovir to either BTE or TF3. This increase supports that synergy is present between 

both theaflavins and acyclovir. As prevalence of acyclovir resistant herpes increases in 

immunocompromised patients, the need for additional novel treatments becomes 

necessary. The synergistic relationship observed between theaflavins and acyclovir may 

provide such a prophylactic treatment option to decreasing the rate of new resistant cases.
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